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ABSTRACT: A great deal has previously been written about the use of skeletal morphological changes in estimating ages-at-death. This article
looks in particular at the pubic symphysis, as it was historically one of the first regions to be described in the literature on age estimation. Despite
the lengthy history, the value of the pubic symphysis in estimating ages and in providing evidence for putative identifications remains unclear. This
lack of clarity primarily stems from the fact that rather ad hoc statistical methods have been applied in previous studies. This article presents a statis-
tical analysis of a large data set (n = 1766) of pubic symphyseal scores from multiple contexts, including anatomical collections, war dead, and vic-
tims of genocide. The emphasis is in finding statistical methods that will have the correct ‘‘coverage.’’ ‘‘Coverage’’ means that if a method has a
stated coverage of 50%, then approximately 50% of the individuals in a particular pubic symphyseal stage should have ages that are between the sta-
ted age limits, and that approximately 25% should be below the bottom age limit and 25% above the top age limit. In a number of applications it is
shown that if an appropriate prior age-at-death distribution is used, then ‘‘transition analysis’’ will provide accurate ‘‘coverages,’’ while percentile
methods, range methods, and means (€standard deviations) will not. Even in cases where there are significant differences in the mean ages-to-transi-
tion between populations, the effects on the stated age limits for particular ‘‘coverages’’ are minimal. As a consequence, more emphasis needs to be
placed on collecting data on age changes in large samples, rather than focusing on the possibility of inter-population variation in rates of aging.
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Human osteological remains are routinely used in forensic
anthropology either to estimate various characteristics of individuals
to aid in identification, or to serve as evidence in a putative identi-
fication. Either pursuit should have a Bayesian underpinning. In the
estimation setting it is necessary to have a prior distribution for the
estimate, while in the evidentiary setting it is necessary to have the
probability of getting the observed osteological data for a case from
the population at large. This probability comes fairly directly from
the prior distribution characterizing the population at large, or it
can come directly from the observed distribution of the osteological
data in the population at large.

This paper is the second in a four part series on estimation and
evidence in forensic anthropology. The first paper (1), which
formed a chapter in an edited volume, examined the use of long
bone data both in estimating stature within a Bayesian setting and
in presenting evidence when stature is ‘‘known’’ for a ‘‘positive’’
identification. The current paper examines the use of the Suchey–
Brooks (2–4) pubic symphyseal system both in age estimation and
in the presentation of evidence for putative identifications. The
planned third paper will present comparable estimation and evi-
dence problems for categorical variables such as sex and ‘‘race,’’
while the final paper in this series will present the estimation and
evidence problem for time-since-death.

The focus here on a single ordinal categorical variable (the six
Suchey–Brooks stages) in a discussion of methods for age estima-
tion and presentation of evidence is perhaps unfortunate. While
such staged systems from the pubic symphysis have received con-
siderable attention in their own right (2–12), methods that are based
on multiple ‘‘indicators’’ (13–20) naturally provide more informa-
tion. In this paper the focus is on a single staged (i.e., ordinal cate-
gorical) system for three reasons. First, there are now a
considerable amount of data for the Suchey–Brooks system on
known age individuals from a number of different populations and
contexts. The current paper uses data on over 1700 known age-at-
death males. Second, it has been suggested in a number of places
(20,21) that populations may vary in the timing of their progression
through the Suchey–Brooks stages. As the current data are from a
number of different populations, it is possible to examine the prac-
tical effect of such possible timing differences. And finally, it is
necessary in a methodological paper such as this to focus on a sin-
gle ‘‘indicator’’ of age because the multiple ‘‘indicator’’ method
adds considerable analytical complexity.

Materials and Methods

The Samples and Data

The sample consists of 1766 males with known ages-at-death
(see Table 1). Of these individuals, sub-samples come from (in
order from largest to smallest sample size) the Los Angeles Coro-
ner’s Office (2), the Terry Anatomical Collection, U.S. Korean
War Dead (22), Balkan genocide victims, and the Department of
Anatomy of the University of Chiang Mai, Thailand (10). Some
comments are in order here concerning the documentation for
ages-at-death in each sub-sample. Of the sub-samples, the L.A.
Coroner’s Office sample is one of the better documented, as birth
certificates were available and time of death was known. The data
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used here were obtained from a handout accompanying a poster
presented by Suchey (personal communication) at the AAFS meet-
ings on February 14, 1986 in New Orleans. The Terry Anatomical
Collection is much more poorly documented. Ages-at-death were
reported when individuals were entered into this dissection-room
collection, but the source for these ages is not documented. There
is ‘‘age heaping’’ on ages ending in zeros and fives, so it seems
most likely that the ages were either self-reported prior to death or
were taken from information provided by relatives or friends. The
Korean War Dead sample is primarily composed of those killed in
action, in which case the exact birth date and death date are known
(age-at-death is then known to within a day). Some of the Korean
War Dead remains were from individuals who died as POWs,
in which case the date of death was sometimes only known to
within a month or two. The ages-at-death for the University of
Chiang Mai sample are taken from Schmitt’s (10) Figure 2 using
‘‘DataThief’’ (http://www.datathief.org/). Because these are read
from a scan of Schmitt’s graph, the ages may be slightly inaccurate.
Table 2 lists the ages within Suchey–Brooks stages for the Thai
sample used within this study.

Of the five sub-samples, the Balkan sample is one of the more
difficult to work with in terms of documentation. The identification
of remains was made by relatives, usually based on personal effects
and clothing. The ages-at-death are those reported by relatives and
so may be inexact. Djurić (23) previously noted in a study of 39
Kosovars that: ‘‘After recognition of associated material (clothes
and personal belongings) by the family of the victims, and compar-
ison of antemortem and postmortem data by the anthropologist, the
12 positive identifications were made.’’ These comparisons appar-
ently did not involve DNA analysis, which raises the question of
validity of such identifications. Because of this concern, in some
analyses reported here, the Balkan sample is treated as a ‘‘test
case’’ with unknown ages. If there are a considerable number of
misidentifications, then ultimately the estimated ages would be only
randomly associated with the reported ages.

The Suchey–Brooks (2) scores for pubic symphyseal develop-
ment were recorded for all samples. These scores represent a six-
stage ordinal categorical scale that grew out of lumping Todd’s
(12) 10-phase system. The Los Angeles Coroner’s Office sample
was scored by Judy Suchey using the original 10-phase system and

was later collapsed into the six-stage Suchey–Brooks system. The
Terry Anatomical Collection was scored by Herrmann again using
the original Todd system, while the Korean War Dead sample was
similarly scored by Herrmann, Wescott, and Konigsberg. The Bal-
kan sample was scored by Kimmerle using the Suchey–Brooks six-
stage system. The Thai sample was scored by Aurora Schmitt (10).
Because the Thai sample size is so low (n = 37), this sample is not
used for any direct estimation problems, but is included to examine
a point made in Schmitt (10). She has argued that the 95% ranges
given in Katz and Suchey (2) for age within stage include much
less of the age distribution for the Thai sample than one would
expect.

Percentile Method

There is a long history in forensic and physical anthropology of
using sample statistics of age within stage to estimate age. For
example, Katz and Suchey (2) gave a table that lists the sample
sizes within their six stages of the pubic symphysis, as well as the
mean age, the standard deviation of age, and the 95% range of age
within stage. The application to a target sample or case of mean
age and standard deviation within stage from a reference (known
age) sample is a perilous exercise. There is little reason to expect
that the age distribution within skeletal stages will be Gaussian, or
even that it will be symmetric. It is for this reason that the use of
percentiles of age within stage, as advocated in Katz and Suchey
(2), is the better approach. Their use of the ‘‘95% range’’ amounts
to listing the 2.5 and 97.5 percentiles of age. But even the percen-
tile method has considerable disadvantages over ‘‘transition analy-
sis,’’ which is described below. First, the percentile method, when
used, should include standard errors on the percentiles. This is nec-
essary because when a sample is subdivided by stages, the individ-
ual stages may contain relatively few individuals. As a
consequence some percentiles themselves may have substantial
sampling variances. A second problem is that the listing of a few
sample percentiles provides a rather incomplete description. If
authors provide, for example, the 95% range this will be of little
help to researchers who may only need a 50% range (the bottom
25th and top 75th percentiles). Both of these problems can be
addressed graphically by producing complete Kaplan–Meier (24)
plots of survivorship within stage and including confidence inter-
vals on the survivorship. But a final problem with any method that
conditions on stage to estimate age is that all of these methods con-
tain an implicit prior distribution for age. This implicit prior is the
actual age distribution of the reference sample itself. Much ink has
needlessly been shed both in forensic and physical anthropology on
the need for ‘‘population specific’’ estimators, when in fact many
of the perceived differences in aging between samples derive from
the different age structures of the study populations.

Transition Analysis

Extensive use is made here of what Boldsen et al. (19) have
referred to as ‘‘transition analysis.’’ Transition analysis is a paramet-
ric method for modeling the passage of individuals from a given
developmental stage to the next higher stage in an ordered
sequence. In the current example, there are six ordered phases
within the Suchey ⁄ Brooks (2,12) pubic symphyseal system, so five
transition distributions must be modeled (one between phase I and
II, one between II and III, one between III and IV, one between IV
and V, and one between V and VI). If there were longitudinal data,
it would be a quite simple task to characterize these distributions,
as one could look at the empirical distributions for, say, the day at

TABLE 1—Samples used in the current study.

Collection n

Los Angeles Coroner 737
Terry Anatomical Collection 422
Korean War 358
Balkans 212
University of Chiang Mai Anatomical Collection 37
Total 1766

TABLE 2—Age distribution within Suchey–Brooks pubic symphyseal stages
for the University of Chiang Mai Anatomical Collection males.

Stage Ages

2 20, 22, 30, 39, 58
3 49, 51, 59, 68, 75
4 41, 42, 46, 46, 47, 49, 51, 57, 75, 79, 82
5 42, 43, 45, 51, 53, 56, 58, 59, 59, 66, 76
6 34, 60, 62, 71, 82

Ages are from ‘‘DataThief’’ (http://www.datathief.org/) applied to
Schmitt’s (10) Figure 2.
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which individuals changed from a Suchey–Brooks phase II to a Su-
chey–Brooks phase III. As the Suchey–Brooks system represents a
continuum of morphology by a six-phase ordered system, it would
be quite difficult to decide on what given day the morphology
‘‘switched,’’ so the task would be simpler if the data were more
coarsely sampled (say at yearly intervals or so). But in the real-
world case data are sampled cross-sectionally so that there is a soli-
tary observation on each individual, and consequently one cannot
‘‘see’’ the distributions of transition ages. Instead, it is necessary to
assume a distributional form for the transitions and then fit the tran-
sition analysis model by the method of maximum likelihood.

The method can be introduced starting with a simplified version
and then elaborated to account for the actual complexity of analyz-
ing age progression in pubic symphyseal development. As a very
crude first example, the pubic symphyseal phases can be collapsed
into two very broad stages. The first stage is composed of Suchey–
Brooks phases I and II and the second stage contains phases III to
VI. Phase III in the Suchey–Brooks system represents the point at
which the oval outline of the symphyseal face is complete, so the
crude two-stage system contrasts incomplete with complete pubic
symphyseal faces. A probit model (25,26) was fit to the 1766
males using the glm function in ‘‘R’’ (27,28). (‘‘R’’ scripts for all
of the Figures and analyses in this paper can be obtained from
https://netfiles.uiuc.edu/lylek/www/JFS08.htm.) Probit regression fits
an intercept and regression slope much like an ordinary regression,
but these can be converted to the average age and standard devia-
tion of age at which individuals move from stage 1 to stage 2 (or
from Suchey–Brooks phase II to phase III). In the current example,
the average age is 27.30 years and the standard deviation is
7.41 years.

Transition analysis can be represented graphically, so before
looking at the extension to more than two stages it is useful to look
at graphical representations. Rather than work in the straight scale
for age, one can use age in the natural log scale so that the transi-
tion distribution is log normal. Figure 1 shows the transition

distribution both in the straight scale and in the log scale. For the
log normal the mean age-at-transition is 26.52 which is 0.78 years
less than for the normal distribution. An advantage of the log-nor-
mal distribution is that because it is not symmetric it generally will
not include ages-at-transition that are extremely young, while in
some settings the normal transition distribution may even include
negative ages-at-transition. The transition analysis method can also
be compared graphically to (nonparametric) kernel density estima-
tion (13,29,30). This provides a graphical check on the reasonable-
ness of the parametric transition analysis method. Figure 2 shows
the probability across age of being in Suchey–Brooks stages I or II
as versus stages III–VI. These probabilities are shown using both
the log-normal transition model and kernel density estimation. As
can be seen from Fig. 2, these very different methods produce
rather similar probabilities.

Building on the previous example, a cumulative probit model
can be applied to age on a log scale thus representing more than
one transition. The cumulative probit, also sometimes referred to as
the proportional odds model with a probit link or ordered probit,
has been covered extensively in the literature (19,25,26,31–42).
Figure 3 shows the age-at-transition distributions between the six
stages. For comparison, the log-normal distribution between stages
I–II and III–VI that was previously calculated (see Fig. 1) is also
shown in Fig. 3. An attractive feature of the cumulative probit is
that it will provide similar results when stages are collapsed.
Figure 4 shows the probability from the cumulative probit of being
in each stage at a given age as well as the kernel density estimates.
As the probit and kernel density methods do not agree well for
Suchey–Brooks stage V and VI, Fig. 5 shows how a simple col-
lapsing of these last two stages into one stage can bring the two
methods into agreement.

Age Estimation from Transition Analysis and a Prior Age
Distribution

If one adopts a Bayesian approach to age estimation then a
prior age-at-death distribution must be specified. Lucy et al. (14)

FIG. 1—Age-at-transition distributions (log normal and normal) between
Suchey–Brooks stages I to II and III to VI based on 1766 known age males.

FIG. 2—Probabilities of being in Suchey–Brooks stage I or II as versus
stages III to VI. The solid lines are from a (nonparametric) kernel density
while the dashed lines are from the log-normal transition analysis.
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argued for using the reference sample both to obtain likelihood
functions (which is what transition analysis provides) as well as
the prior age-at-death distribution. In many contexts, including
the current article, it may not be at all reasonable to use the ref-
erence sample to obtain a prior age-at-death distribution. In the
current context the L.A. Coroner’s Office sample age-at-death
distribution may be representative of ‘‘individuals dying from
accidents, suicides, homicides or unexpected natural deaths’’ (3)
in Los Angeles County, California, but it would not form a rea-
sonable prior for deaths from conventional wars or from acts of
genocide. The Terry Anatomical Collection sample used here
represents only about half of the available males, and was
selected to approximate a uniform age-at-death distribution, so it
would be a poor choice for a prior age-at-death distribution. The
Korean War dead sample represents mortality from a conven-
tional war, and would not form a reasonable prior in most
forensic anthropology contexts.

Prior age-at-death distributions should be specified so that they
are reasonable guesses at what the possible age should be for an
individual case prior to an osteological analysis. In the results sec-
tion of the paper, two main examples of age estimation are pre-
sented, one using the Balkan sample and the other using the Thai
sample. For the Balkan sample it would be reasonable to use an
‘‘age-at-missing’’ distribution reported in Komar (43), but as
shown in the results section, this distribution does not match the
age-at-death distribution for the 199 Balkan individuals with ages-
at-death between 20 and 75 years. As a consequence, a Gompertz
model is used to fit the 212 Balkan individuals as a prior age-at-
death distribution, and similarly a Gompertz model is used for
the 37 Thai individuals. Combining these prior age-at-death distri-
butions with the probabilities from the transition analysis of being
in the observed Suchey–Brooks stages yields a function that is
proportional to the posterior density of age. Dividing through by
the integral across age gives the probability density function

FIG. 3—Log-normal age-at-transition distributions between the six Suchey–Brooks stages calculated from a cumulative probit model on 1766 males. In the
second panel (for transition between stage II and III), the log-normal distribution from Fig. 1 is shown as a dashed line.
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(PDF) of age conditional on Suchey–Brooks stage. From this
PDF one can find the highest posterior density region (44)
(HPDR) for any specified level of coverage. ‘‘Coverage’’ here
refers to the percentage of individuals expected to fall within the
specified HPDR. In the current example only 50% coverage is
used, as this optimizes one’s ability to find deviations from the
expected level of coverage. For comparison, the mean age by
stage plus and minus 0.674 standard deviation units from Suchey
and Katz’s (3) Table 1 (p. 211) is used. This later tabling of val-
ues was based on a rescoring of the L.A. Coroner’s sample using
the six-stage Suchey–Brooks system, the same system that was
used to score both the Balkan and Thai samples. If ages-at-death
are normally distributed within stage for the L.A. Coroner’s sam-
ple, then €0.674 standard deviations should give a 50% confi-
dence interval. The correctness of coverage for the HPDR and
confidence interval approaches are examined using a cumulative
binomial test. The cumulative binomial is also used to test if the

HPDR and confidence intervals are appropriately centered on the
age distributions within stages.

Pubic Symphyseal Stages as Evidence in ‘‘Positive Identifica-
tion’’ Cases

Steadman et al. (45) have already discussed the use of both
pubic symphyseal and auricular surface stages in calculating the
likelihood ratio for a ‘‘positive identification.’’ As Konigsberg
et al. (46) have noted, it is the likelihood ratio that should be
reported when building the evidentiary basis for identifications.
The likelihood ratio in the current setting is calculated as the
probability that an individual would be in the observed Suchey–
Brooks stage conditional on the known (if the identification is
correct) age divided by the probability of obtaining the observed
Suchey–Brooks stage from the ‘‘population at large.’’ As likeli-
hood ratios will be calculated for a number of different samples,

FIG. 4—Probabilities of being in each of the Suchey–Brooks stages. The solid lines are from a (nonparametric) kernel density while the dashed lines are
from the log-normal transition analysis.
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the probability of obtaining particular Suchey–Brooks stages can
be estimated by the observed frequencies in each sample. The
probability that an individual would be in an observed Suchey–
Brooks stage conditional on ‘‘known’’ age is found from the tran-
sition analysis.

For ease of interpretation the likelihood ratio can be converted to
a base 10 logarithm. A score of zero then represents ‘‘evens’’ or
the case where the observed Suchey–Brooks stage is as likely to
come from the identified individual as from an individual selected
at random. Similarly a score of 1.0 represents a likelihood ratio of
10, so that the Suchey–Brooks stage is 10 times more likely to be
observed in the identified case than in an individual from the popu-
lation at large. Because the evidentiary value of the Suchey–Brooks
system is sample specific, one needs to examine plots of the log-
likelihood ratio distributions for each of the four largest samples
(the Los Angeles Coroner’s Office sample, the Terry Anatomical
Collection, The Korean War Dead sample, and the Balkan sample).

These likelihood ratios are calculated using transition analysis from
the total sample less each of the particular samples under study. In
each plot the average distribution from 1000 permutations across
the sample is shown to indicate the expected distribution under ran-
dom ‘‘positive identifications.’’

Results

Percentile Method

Figures 6–9 show the Kaplan–Meier (24) survivorship estimates
and 95% confidence intervals within the six Suchey–Brooks pubic
symphyseal stages for the Los Angeles Coroner’s samples, the
Terry Anatomical Collection, the Korean War Dead sample, and
the Balkan sample. Table 3 lists sample sizes within stages for each
sample, as well as the 2.5th, 25th, 50th, 75th, and 97.5th percentiles
of age within stage. The percentiles were found using ‘‘method 7’’

FIG. 5—Probabilities of being Suchey–Brooks stages I, II, III, IV, and V ⁄ VI combined. The solid lines are from a (nonparametric) kernel density while the
dashed lines are from the log-normal transition analysis.
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from Hyndman and Fan (47), and the ages were rounded to the
nearest integer. The 2.5th and 97.5th percentiles for the Los Ange-
les Coroner’s sample agree with the ‘‘95% range’’ published in
Katz and Suchey’s (2) Table 8, except for the bottom age of
36 years for stage VI given in Katz and Suchey. A value of
39 years was obtained here; presumably the value of 36 years was
a typographical error. Additionally, there are two less individuals in
the first stage as compared to Katz and Suchey because two indi-
viduals under 14 years were excluded here.

Table 3 provides the 50th percentile of age within stage across
samples as a quick summary of the central tendencies for age
within stage. The 50th percentile is the median age within stage,
and could also be read from the survivorship graphs in Figs. 6–9
where the 95% confidence interval on the median is also shown.
Survivorship by stage is a function of both the total sample survi-
vorship and the aging ⁄ senescence pattern for the age ‘‘indicator.’’
As a consequence, the contrast of Fig. 8 for the Korean War Dead

sample with Figs. 6, 7, and 9 illustrates the often cited example
where a direct application of ‘‘age-by-stage’’ information from the
young Korean War Dead sample would underestimate ages for
more typical forensic or anatomical samples which contain older
adults.

Transition Analysis

Some graphical results from transition analysis have already been
provided in the methods section to explain the method. In this sec-
tion more detailed results are provided in tabular form so that the
method can be applied to future samples. Table 4 contains the tran-
sition analysis parameters (mean and standard deviation of the log
age of transition) between each of the six Suchey–Brooks stages
for all individuals in the study (n = 1766), for all except the Balkan
sample (n = 1554), and for just the Balkan (n = 212), Los Angeles
Coroner’s Office (n = 737), Terry Anatomical (n = 422), and

FIG. 6—Survivorship within Suchey–Brooks pubic symphyseal stages for the Los Angeles Coroner’s sample. The central horizontal line in each panel is at
0.5 survivorship, which is the median age within each stage. The dashed lines represent the 95% confidence intervals around the Kaplan–Meier estimates of
survivorship.
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Korean War (n = 358). The table also gives the standard errors for
all parameters and the mean age-at-transition converted back to the
original straight scale of years.

From the standard errors and parameter values in Table 4, it
may be tempting to test for differences in rates of aging between
the samples. Plus and minus 1.96 times the standard error gives an
approximate 95% confidence interval for a given parameter. Using
such a basis for comparison one might surmise, for example, that
individuals from the Balkans enter a Suchey–Brooks stage III from
stage II significantly earlier than individuals from other regions.
But while it is true that the Balkan confidence interval for the
mean age-at-transition between stages II and III does not overlap
the comparable transition for individuals from other samples, this
does not directly address the question of how well ‘‘non-Balkan
standards’’ would apply to individuals from the Balkans. To look at
this question, Fig. 10 plots the transition distributions based on the
1554 non-Balkan individuals and the 212 Balkan individuals.
Figure 11 shows a comparable plot of what are known as normed
likelihoods (48). These normed likelihoods are the probabilities of

being in each Suchey–Brooks stage (based on the transition analy-
ses) but scaled such that the maximum probability (or really, the
maximum likelihood) is equal to 1.0. Figure 11 also shows dotted
horizontal lines at normed likelihoods of 0.7965 and 0.1465. From
a frequentist standpoint, the 95% confidence set for age conditional
on Suchey–Brooks stage consists of all ages with normed likeli-
hoods greater than 0.1465 (from equation 7.20 in Shao [49] and
see Konigsberg and Frankenberg [50]). Similarly, the 50% confi-
dence set for age conditional on Suchey–Brooks stage consists of
all ages with normed likelihoods greater than 0.7965.

Age Estimation from Transition Analysis and a Prior Age
Distribution

As a test for transition analysis, the parameters have been
applied to estimate age ranges for the 212 Balkan individuals and
the 37 Thai individuals. In both analyses, the transition analysis
parameters were calculated for the entire male sample but excluded
the Balkan sample when testing on the Balkans, and similarly

FIG. 7—Survivorship within Suchey–Brooks pubic symphyseal stages for the Terry Anatomical Collection, drawn as in Fig. 6.
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excluded the Thai sample when testing for Thailand. For both sam-
ples, it is necessary to have a prior age distribution, for which
Gompertz models are used here. The youngest individual in the
Balkan sample was 17 years old and for the Thai sample the youn-
gest individual was 20 years old, so the Gompertz models begin at
ages 17 and 20, respectively. Figure 12 compares the age distribu-
tion from Komar’s (43) Srebrenica age-at-missing data with the
age-at-death data for 199 Balkan individuals in the current study
with ages between 20 and 75 (inclusive). As these age distributions
are quite dissimilar, a Gompertz model fit to the current data is
used to represent the prior age-at-death distribution. Figure 13
shows the 95% confidence intervals for the Kaplan–Meier and
Gompertz model for the Balkan sample, while Fig. 14 shows a
comparable graph for the Thai sample.

Figure 15 shows a plot of coverage for the Balkan sample com-
paring the Suchey–Brooks confidence intervals to the transition
analysis HPDRs. The stages have been randomly ‘‘jittered’’ to
reduce overlap of the points, and the HPDRs from the transition

analysis are plotted above the points and the Suchey–Brooks confi-
dence intervals below. The intervals shown in Fig. 15 are supposed
to represent 50% coverage. For transition analysis 108 of the 212
individuals (50.9%) fall within the nominal 50% regions. On a
cumulative binomial test this is not significantly different from the
expected coverage (p = 0.8368). Of the 104 individuals who fall
outside of the 50% HPDRs, 53 are below the HPDR and 51 are
above. This does not differ significantly from the expected 1:1 ratio
on a cumulative binomial test (p = 0.9219). For the Suchey–Brooks
confidence intervals, 90 of the 212 individuals (42.5%) fall within
the nominal 50% regions. On a cumulative binomial test, this does
differ significantly at the 0.05 level from the expected coverage
(p = 0.0330). Of the 122 individuals who fall outside of the 50%
Suchey–Brooks confidence interval, 36 are below the confidence
interval and 86 are above. This does differ significantly from the
expected 1:1 ratio on a cumulative binomial test (p < 0.0001).

Figure 16 shows a coverage plot for the Thai sample. For transi-
tion analysis, 17 of the 37 individuals (45.9%) fall within the

FIG. 8—Survivorship within Suchey–Brooks pubic symphyseal stages for the Korean War Dead sample, drawn as in Fig. 6.
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nominal 50% regions. On a cumulative binomial test, this is not
significantly different from the expected coverage (p = 0.7428). Of
the 20 individuals who fall outside of the 50% HPDRs, six are
below the HPDR and 14 are above. This does not differ signifi-
cantly from the expected 1:1 ratio on a cumulative binomial test
(p = 0.1153). For the Suchey–Brooks confidence intervals, eight of
the 37 individuals (21.6%) fall within the nominal 50% regions.
On a cumulative binomial test, this does differ significantly at the
0.001 level from the expected coverage (p = 0.0007). Of the 29
individuals who fall outside of the 50% Suchey–Brooks confidence
interval, two are below the confidence interval and 27 are above.
This does differ significantly from the expected 1:1 ratio on a
cumulative binomial test (p < 0.0001).

Figures 17–20 show the cumulative distributions of log-likelihood
ratios for the four largest samples: the Los Angeles Coroner’s
Office sample, the Terry Anatomical Collection, the Korean War
Dead sample, and the Balkan sample. In each of these figures, the
transition analysis parameters are calculated from the entire sample

but excluding the sample of interest. The Los Angeles Coroner’s
Office sample shows the highest evidentiary value, with 84.80% of
the cases having log-likelihood ratios greater than zero. This means
that for 84.80% of the cases the likelihood ratio is greater than 1.0,
which in turn means that the Suchey–Brooks stage is more likely
to be seen if the identification is correct than it is to be seen if the
individual is randomly drawn from the sample. For the Terry Ana-
tomical Collection the evidentiary values are generally lower, such
that only 52.84% of the sample has likelihood ratios greater than
1.0. The Korean War sample is intermediate with 73.18% of the
cases having likelihood ratios greater than 1.0, and finally the Bal-
kan sample has a slightly higher percentage than the Korean War
sample, with 75.47% of the cases from the Balkans having likeli-
hood ratios greater than 1.0. For comparison, Figs. 17–20 also
show the average distribution of likelihood ratios from 1000 permu-
tations of the Suchey–Brooks stages against the known ages. In the
Los Angeles Coroner’s Office sample, 45.05% of the randomized
cases had likelihood ratios greater than 1.0, for the Terry

FIG. 9—Survivorship within Suchey–Brooks pubic symphyseal stages for the Balkan sample, drawn as in Fig. 6.
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Anatomical Collection this percentage was 35.54%, for the Korean
War sample the percentage was 46.93%, and for the Balkan sample
the percentage was 44.81%.

Discussion

The discussion in this paper is framed around a number of par-
ticular methodological issues that often arise in attempting to esti-
mate age-at-death or presenting osteological evidence that may
help confirm identifications. The first problem to be dealt with is
that of how to model the progression of individuals through an
ordered (staged) system such as the Suchey–Brooks pubic symphy-
seal stages. The use of the term ‘‘model’’ reveals a predilection for
parametric methods. While the use of nonparametric kernel density
regression or estimation (13,51) is an extremely useful tool for
checking the reasonableness of a parametric model, nonparametric

methods are difficult to generalize across different studies. Such
methods typically require access to raw data. Kernel density esti-
mation (a nonparametric method) was used for Figs. 2, 4, and 5,
and indeed the method demonstrated a departure from unimodality
for the probability of being in stage V (see Fig. 4). This departure
could be corrected by combining stages V and VI as shown in
Fig. 5. The departure from unimodality for the probability of being
in stage V is perhaps none too surprising given that there was a
major reclassification of stage V and VI when Brooks and Suchey
(3,4) rescored symphyses that had previously been scored on the
Todd 10 phase system. As the data for the current analysis consist
of some samples that were scored with reference to the Suchey–
Brooks stages and others that were scored on the Todd system
(and then ‘‘collapsed’’ to Suchey–Brooks), there is internal
heterogeneity.

Among parametric models for ordinal categorical data, a simple
one has been adopted here, using cumulative probit analysis with
age measured on a log scale. The fact that the nonparametric kernel
method and the cumulative probit provide very similar probabilities
for being in each Suchey–Brooks stage conditional on age (see
Figs. 4 and 5) is a clear sign that the cumulative probit is a reason-
able model. Konigsberg and Herrmann (52) have used an unre-
stricted cumulative probit to model progression through the
Suchey–Brooks stages, Boldsen et al. (19) have used a continuation
ratio approach, and Samworth and Gowland (53) have suggested
using a shifted exponential. All of these models add a level of
complexity that seems unnecessary in the current context. In the
case of continuation ratios, there is the additional problem that
stages which are combined can produce different transition parame-
ters depending on whether the continuation ratios are ‘‘forward’’ or
‘‘backward’’ ratios. As Figs. 1 and 3 show, the cumulative probit
provides a very similar transition distribution regardless of whether
that transition is between stages I and II combined to stages III
through VI combined, or between stages II and III.

An additional benefit of using a relatively simple parametric
model to represent progression through the Suchey–Brooks stages
is that one can provide all of the relevant information in simple
tabular form (see Table 4). The percentile method, which was
applied graphically in Figs. 6–9 and summarized in Table 3 cannot
be presented as compactly. Furthermore, the percentile method
takes essentially a ‘‘hidden Bayesian’’ approach where the reference
sample prior age distribution influences the calculated percentiles.
The use of percentiles or any percentile-based method such as the
‘‘95% range’’ consequently cannot be recommended.

TABLE 3—Sample sizes within Suchey–Brooks stages and the 2.5th, 25th,
50th (median), 75th, and 97.5th percentiles of age within stage.

Stage n 2.5% 25% 50% 75% 97.5%

Los Angeles Coroner’s Office
I 119 15 17 19 20 23
II 81 19 22 24 26 35
III 43 22 25 27 31 43
IV 153 23 30 34 43 59
V 241 28 41 51 60 78
VI 100 39 54 63 72 87

Terry Anatomical Collection
I 22 18 20 22 25 30
II 46 22 25 30 36 59
III 27 23 28 37 44 65
IV 173 26 35 45 56 78
V 122 31 45 55 69 85
VI 32 37 51 61 73 88

Korean War Dead
I 167 18 19 20 21 24
II 83 19 21 23 26 34
III 22 22 24 26 28 40
IV 50 22 26 30 33 41
V 28 26 30 31 34 42
VI 8 24 31 38 40 49

Balkans
I 13 17 19 20 21 25
II 6 20 21 23 25 32
III 20 23 25 27 35 45
IV 65 26 33 40 51 68
V 71 28 40 49 58 70
VI 37 42 53 61 73 84

TABLE 4—Transition analysis parameters.

Parameter

Estimate Standard Error exp(Est.) Estimate Standard error exp(Est.) Estimate Standard error exp(Est.)

All males (n = 1766) Without Balkans (n = 1554) Balkans (n = 212)

I–II 3.0240 0.0158 20.6 3.0339 0.0161 20.8 2.9177 0.0684 18.5
II–III 3.2860 0.0136 26.7 3.3019 0.0141 27.2 3.0436 0.0600 21.0
III–IV 3.4077 0.0129 30.2 3.4162 0.0135 30.5 3.3147 0.0455 27.5
IV–V 3.7982 0.0123 44.6 3.8099 0.0130 45.1 3.7612 0.0313 43.0
V–VI 4.2688 0.0181 71.4 4.2731 0.0187 71.7 4.1916 0.0434 66.1
Standard deviation 0.3175 0.0084 — 0.3174 0.0088 — 0.3118 0.0265 —

Los Angeles (n = 737) Terry Collection (n = 422) Korean War (n = 358)

I–II 3.0172 0.0208 20.4 2.7887 0.0757 16.3 3.1024 0.0133 22.3
II–III 3.2457 0.0184 25.7 3.2064 0.0492 24.7 3.2977 0.0155 27.0
III–IV 3.3541 0.0176 28.6 3.3554 0.0419 28.7 3.3615 0.0167 28.8
IV–V 3.6785 0.0163 39.6 4.0115 0.0352 55.2 3.5363 0.0216 34.3
V–VI 4.1818 0.0200 65.5 4.6079 0.0647 100.3 3.7220 0.0357 41.3
Standard deviation 0.2462 0.0098 — 0.4512 0.0337 — 0.1590 0.0098 —
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Some of the transition analysis parameters provided in Table 4
indicate significant differences between samples for mean ages-at-
transition. For example, it has already been mentioned that the
mean age-at-transition between stage II and III is significantly
lower for the Balkan sample as versus a conglomeration of all
other samples. But as has also already been mentioned, such signif-
icant differences do not necessarily translate into appreciable differ-
ences in likelihoods, and consequently would have little impact on
the posterior density of age. In Fig. 10, which compares the age-at-
transition distributions for the Balkans versus all other samples, it
is clear that there is very substantial overlap in the distributions for
any given transition. In Fig. 11, which shows the normed likelihood
with a uniform prior for age-at-death, it is also clear that the differ-
ences between the Balkans and all other samples has no apprecia-
ble effect on confidence intervals for age-at-death.

Because the percentile method does not allow for different
prior age-at-death distributions, while maximum likelihood (i.e.,
non-Bayesian) estimation of age-at-death uses an unreasonable

uniform prior (as in Fig. 11), it is better to use explicit priors
when estimating age-at-death. Figure 12 shows that the age-at-
missing distribution from Komar’s Srebrenica data (43) does not
match the age-at-death distribution for the current sample of 199
Balkan males with ages-at-death between 20 and 75. This depar-
ture is likely due to the fact that the Srebrenica data are from
reported missing persons’ ages, which may depart from ages for
individuals who were missing, recovered, and identified. It is
unlikely that such a departure would arise from misidentifications,
because a systematic difference such as observed in Fig. 12 would
only arise if misidentification rates are correlated with age-at-
death. Figures 13 and 14 show that a Gompertz model of mortal-
ity can be adequately fit to the sample of Balkan and Thai males,
respectively, while Figs. 15 and 16 show that the 50% coverage
from transition analysis is accurate in its coverage and placement.
Specifically, the 50% coverage includes approximately 50% of
the ages-at-death by Suchey–Brooks stage and approximately as
many ages are below the 50% coverage as are above. Such is

FIG. 10—Log-normal age-at-transition distributions calculated for the 1554 non-Balkan males (sold lines) and for the 212 Balkan males (dashed lines).
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not the case for the confidence intervals taken directly from
Suchey’s data assuming a normal distribution for age within stage.
For both the Balkan and Thai samples these confidence intervals
include less than the stated coverage and tend to underestimate
age-at-death.

On the evidentiary value of the Suchey–Brooks stages, a rather
different tack from those previously explored has been taken here.
From the statistical literature on ordinal categorical data, it is
common to see some summary measure of the fit of a model,
usually referred to as a pseudo R2 (31,54–56). The preference in
this article in using transition analysis is to look at the ‘‘eviden-
tiary value’’ provided by log-likelihood ratio statistics rather than
any R2 based measure. The latter provide a measure of the pro-
portion of variation in one variable, in this case Suchey–Brooks
stage that is explained by another variable, in this case age. Such
a measure of association, while potentially of academic interest,

tells little about the utility of the method in actual forensic appli-
cations. For example, were it the case that the standard deviations
for transition ages between Suchey–Brooks stages were remark-
ably small, say on the order of a few days, then the R2 would be
equal to one. Similarly, this would provide probabilities of being
in each of the six stages that are zero when individuals were not
between the relevant two transition age means, and that were
equal to one when they were between the relevant two transition
age means. In other words, once one knew the age of an individ-
ual one would know with complete certainty the Suchey–Brooks
stage of the individual, and similarly if one knew the Suchey–
Brooks stage for an individual one would exactly know the indi-
vidual’s possible age range. However, the system would in most
contexts still have relatively low evidentiary value for the simple
fact that there are only six stages. The extent to which the
Suchey–Brooks system is informative for a particular identification

FIG. 11—Normed likelihoods for age against stage for the 1554 non-Balkan males (solid line) and 212 Balkan males (dashed line). The upper dotted hori-
zontal lines represent the 50% confidence set, so that normed likelihoods above this line represent ages in the 50% confidence set. The lower dotted lines rep-
resent the 95% confidence set.
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in such an unlikely setting depends on the rarity of a given stage,
which in turn depends completely on the age-at-death structure
for the population at large.

The graphs shown in Figs. 17–20 show, as one would generally
expect, that the evidentiary value of the Suchey–Brooks system is
rather lower. The system certainly operates better than expected at
random, even for the Balkan sample in which identifications are

not based on paper records or DNA. However, with only six stages
the system cannot be expected to provide much information for
identification purposes. When combined with other osteological or

FIG. 12—Comparison of Komar’s (43) age-at-missing data from Sreb-
renecia and the age-at-death distribution for the 199 Balkan males (current
study) with ages between 20 and 75 years (inclusive).

FIG. 13—The 95% confidence interval on survivorship (Kaplan–Meier
method, shown as step functions) for the 212 Balkan males and the 95%
confidence interval on a Gompertz mortality model (shown as smooth func-
tions) fit to the same age-at-death data.

FIG. 14—The 95% confidence interval on survivorship (Kaplan–Meier
method, shown as step functions) for the 37 Thai males and the 95% confi-
dence interval on a Gompertz mortality model (shown as smooth functions)
fit to the same age-at-death data.

FIG. 15—Plot of 50% coverage for the 212 Balkan males. The stages
have been randomly jittered to reduce overlap of points. The upper hatched
rectangles represent the transition analysis 50% regions where the transi-
tion analysis parameters are from the 1554 non-Balkan males and the prior
age-at-death distribution is from the Gompertz model shown in Fig. 13. The
lower hatched rectangles are from the assumption of a normal distribution
of age within each stage and are based on summary statistics in Suchey and
Katz (3).
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FIG. 17—Percentiles of log-likelihood ratios across 737 Los Angeles
Coroners’ Office cases. Transition analysis parameters are from the 1029
individuals in the Korean War Dead, Terry, Balkan, and Thai samples,
while the probability of a person being in a particular stage from the
‘‘population at large’’ is taken from the frequencies among the 737 cases.
The permuted set is from averaging 1000 runs where individuals’ ages are
randomized against stage for the 737 cases. In the actual data, 84.80% of
the log-likelihood ratios are greater than zero (i.e., better than ‘‘evens’’),
while in the permuted data 45.05% are greater than zero.

FIG. 19—Percentiles of log-likelihood ratios across 358 Korean War
Dead cases. The graph is drawn using the same methods as given in the
caption for Fig. 17, but with the transition analysis parameters taken from
the 1408 individuals in the LA Coroner’s, Terry, Balkan, and Thai samples.
In the actual data, 73.18% of the log-likelihood ratios are greater than zero,
while in the permuted data 46.93% of the log-likelihood ratios are greater
than zero.

FIG. 16—Plot of 50% coverage for the 37 Thai males. The stages have
been randomly jittered to reduce overlap of points. The upper hatched rect-
angles represent the transition analysis 50% regions where the transition
analysis parameters are from the 1729 non-Thai males and the prior age-
at-death distribution is from the Gompertz model shown in Fig. 14. The
lower hatched rectangles are from the assumption of a normal distribution
of age within each stage and are based on summary statistics in Suchey and
Katz (3).

FIG. 18—Percentiles of log-likelihood ratios across 422 Terry Anatomical
Collection cases. The graph is drawn using the same methods as given in
the caption for Fig. 17 but with the transition analysis parameters taken
from the 1344 individuals in the LA Coroner’s, Korean War Dead, Balkan,
and Thai samples. In the actual data, 52.84% of the log-likelihood ratios
are greater than zero, while in the permuted data 33.54% of the log-likeli-
hood ratios are greater than zero.
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dental information (45), the Suchey–Brooks system may raise the
log-likelihood ratio for an identification. As ‘‘multifactorial’’ meth-
ods for age estimation are preferable to the use of a single ordinal
categorical system, it logically follows as well that multiple lines of
osteological and dental evidence should be explored when estab-
lishing the likelihood ratio for a ‘‘positive identification.’’
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